Ensayos

Análisis geoestadístico para obtener la gravedad local, pendiente y cálculo hidrológico de las barrancas Colorada y Quimichule del volcán Popocatépetl

Resumen

El siguiente trabajo presenta un estudio geoestadístico de las principales barrancas del volcán Popocatépetl que servirán para obtener la aceleración de la gravedad, la pendiente por distancia-elevación, la altura-gravedad y la fuerza de un líquido.

Abstract

This article presents a geostatistical analysis of the main slopes of the Popocatepetl volcano, which will be used to obtain the gravity acceleration, distance elevation, height gravity and force of a liquid.

Résumé

Le travail suivant présente une étude géostatistique des principaux barrancos du volcan Popocatépetl qui serviront pour obtenir l'accélération de la gravité, la pente par distance-élévation, la hauteur-gravité et la force d'un liquide.

- * Rogelio Ramos-Aguilar,
- * Patricia Máximo-Romero y
- ** Mayra Alejandra Beltrán-Cruz

Palabras clave:

Geoestadístico, Aceleración, Gravedad, Fuerza, Modelo

Introducción

El volcán Popocatépetl se encuentra situado a los 19°17' de latitud Norte y a los 98°38' longitud Occidental del meridiano de Greenwich; colinda con los estados de Puebla, Morelos y México. La localización del volcán en estudio y la actividad que ha presentado en los últimos años, lo identifica como una estructura de riesgo para las comunidades que se encuentran cerca del mismo.

Aplicando diferentes tipos de programas geoestadísticos, se realizó el estudio geomorfológico de las barrancas Colorada y Quimichule calculando la gravedad local y la pendiente en diferentes puntos; posteriormente se obtuvo el coeficiente de correlación altura-gravedad.

La importancia que tiene la correlación de gravedad con la pendiente es relevante ya que de acuerdo a la inclinación que presente la estructura geológica sería mayor el riesgo generado por algún escurrimiento.

Además, mediante un modelo ideal, se presenta el resultado hipotético de las características eruptivas del volcán.

Método

Se utilizaron los programas Traninv web para la conversión de coordenadas UTM a geográficas aplicando el Datum NAD27 y zona 14, el OIML para calcular la gravedad local, el Geoestatistical Enviromenal

^{*} Benemérita Universidad Autónoma de Puebla

Assessment Software (Geoeas) para realizar el análisis estadístico y por último el Surfer para la modelación estructural.

Posteriormente se utilizaron modelos hidrológicos para calcular el gasto y la fuerza de un líquido sobre las barrancas. A través de la aplicación matemática hipotética se calcularon algunos parámetros eruptivos del volcán.

TRANSFORMACION DE COORDENADAS Coordenadas Geográficas NAD27 ITRF92 Latitud Latitud Longitud 19°01'12.4''N 98°12'57.379''W 19°01'14.900''N -98 21569 19.02011 -98.21594 19.02081 Coordenadas en Proyección UTM NAD27 ITRF92 Diferencia (ITRF92-NAD27) Coordenadas en Proyección CCL (12, -102, 17.5, 29.5, 2500000, 0)

FIGURA 1. EJEMPLO DE LA TRANSFORMACIÓN DE LAS COORDENADAS DE UTM A GEOGRÁFICAS PARA TODAS LAS LECTURAS DE LAS BARRANCAS.

			"Datos"		
Punto	Latitud	Longitud	Z	Х	Υ
1	19°02°04.2°	98°36°09.827°	4200	541805.29189908	2104565.59683705
2	19°02°08.988°	98°35°53.520°	4055	542281.71412205	2104714.52382324
3	19°02°11.112°	98°35°36.960°	3940	542765.33555756	2104780.79813034
4	19°02°15.864°	98°35°24.18°	3800	543138.27430897	2104927.04944176
5	19°02°17.303°	98°35°06.324°	3640	543659.93448173	2104973.45727285
6	19°02°19.428°	98°34°49.439°	3440	544153.19176827	2105039.48355822
7	19°02°19.428°	98°34°32.375°	3315	544652.15627396	2105040.68221700
8	19°02°12.336°	98°34°15.311°	3195	545151.65408519	2104823.66422687
9	19°02°11.220°	98°33°58.247°	3065	545650.70770577	2104791.38677296
10	19°02°06.072°	98°33°41.183°	2985	546149.78489721	2104633.40908685
11	19°02°00.168°	98°33°24.120°	2920	546649.21750056	2104453.92978774
12	19°01°49.619°	98°33°07.056°	2855	547149.02607009	2104130.92352549
13	19°01°48.107°	98°33°05.22°	2840	547202.93224521	2104084.34099710

TABLA 1. LA BARRANCA COLORADA TIENE UNA LONGITUD DE 6.5 KM, POR LO QUE SE REALIZARON 13 LECTURAS.

		"Dato	s"		
Punto	Latitud	Longitud	Z	Х	Υ
1	19°01°17.760	98° 35° 49.847°	3920	542391.91	2103140.269
2	19°01°09.012	98° 35° 36.060°	3680	542795.823	2102872.318
3	19°01°00.768	98° 35°21.803°	3500	543213.32	2102619.414
4	19°00°58.68	98° 35°05.856°	3360	543679.56	2102556.697
5	19°00°56.484	98° 34°49.008°	3250	544172.501	2102490.609
6	19°00°54.432	98° 34°32.808°	3150	544645.769	2102428.804
7	19°00°51.731	98° 34°16.32°	3080	545128.049	2102346.38
8	19°00°52.020	98° 34°01.050°	3030	545574.45	2102356.312
9	19°00°30.183	98° 33°46.368°	2990	546003.96	2102300.982
10	19°00°36.359	98° 33°40.572°	2900	546174.736	2101876.963
11	19°00°25.128	98° 33°30.600°	2840	546466.746	2101532.286
12	19°00°11.34	98° 33°23.507°	2780	546675.861	2101108.854
13	18°59°59.856	98° 33°14.148°	2730	546949.951	2100756 324

FIGURA 2. EJEMPLO DEL CÁLCULO DE LA ACELERACIÓN DE LA GRAVEDAD LOCAL, CUYOS DATOS QUE SE REQUIEREN SON LA ALTITUD Y LA LATITUD NORTE.

Conversión de coordenadas de los datos registrados

Para cada barranca los datos se obtuvieron de la carta topográfica E14B42, obteniendo las coordenadas UTM y posteriormente transformándolas a geográficas con el programa Traninv. (Ver figura 1)

En las tablas 1 a 2 se muestran los datos que fueron

utilizados para el procesamiento a cada 500 metros de longitud para cada barranca.

Desarrollo para el cálculo de la gravedad local

La aceleración de la gravedad es la manifestación de la atracción universal que impulsa los cuerpos hacia el centro de la Tierra, es fuerza que determina el peso de los cuerpos. La aceleración de la gravedad se denota por g y se define como el incremento constante de la velocidad por unidad de tiempo, percibido por un cuerpo en caída libre, es inversamente proporcional a la masa m₀ del cuerpo en kilogramos (kg): g=F/m₀.

Para calcular la gravedad local de cada barranca se aplicó el programa recomendado por la Organización Internacional de Metrología Legal. Ver figura 2.

Para corroborar los resultados de la gravedad en diferentes puntos de la barranca a cada 500 metros de distancia, se utilizó la ecuación (1), misma que puede calcularse con una exactitud del orden 0.001%=100 ppm.

Tabla 2. La Barranca Quimichule Tiene una longitud de 6.5 km, por lo Que se realizaron 13 lecturas.

gl =[ge* $(1+(f *sen^2\phi)-(F4*sen^22\phi))]-(\Delta g*h)$ (1)

Donde:

gl = Aceleración de la gravedad local (m/s²).

ge = 9.7803185 m/s², aceleración de la gravedad en el Ecuador ($\Phi = 0$).

 $f^1 = 0.0053024$ (Aplastamiento gravitacional).

 Φ = Latitud, en grados, minutos, segundos (00°00'00'').

h = Altitud sobre el nivel medio del mar (m).

 $F_4 = 0.0000059$

Ver tablas 3 a 4.

Cálculo de la pendiente

La pendiente es la relación que existe entre el desnivel y la distancia en horizontal al plano, lo que equivale a la tangente del ángulo que forma la línea a medir con el eje x.

Con la ayuda de las curvas de nivel en la Carta Topográfica y aplicando el método de interpolación, se determinó la pendiente de las barrancas tomando lecturas a cada 500 metros a lo largo del cause. También, se calculó el promedio aritmético para los puntos en cada barranca, ver tablas 5 a 6.

3	X 541805.292 542281.714	Y 2104565.597 2104714.524	ALTURA 4200	0	1				sen 2 2	i za.uc graveuau	Constantes para calcular la gravedad de un punt
3	542281.714		4200	40			(Decimal)	sen ²	Sen-2	local (gl)	cualquiera, con latitud diferente al Ecuador (ge)
3		2104714 524		19	02	4.2000	19.034500	0.106366	0.380208	9.772851	ge = 9.7803185 m/s ²
	E 4070E 000	21047 14.024	4055	19	02	8.988	19.035830	0.106380	0.380253	9.773300	f' 0.0053024
4	542765.336	2104780.798	3940	19	02	11.112	19.036420	0.106386	0.380273	9.773655	f4 = 0.0000059
	543138.274	2104927.049	3800	19	02	15.864	19.037740	0.106400	0.380318	9.774088	Dg 0.000003086
5	543659.934	2104973.457	3640	19	02	17.303	19.038140	0.106405	0.380331	9.774582	
6	544153.192	2105039.484	3440	19	02	19.428	19.038730	0.106411	0.380351	9.775199	h = (altura del punto)
7 :	544652.156	2105040.682	3315	19	02	19.428	19.038730	0.106411	0.380351	9.775585	f XX "
8	545151.654	2104823.664	3195	19	02	12.336	19.036760	0.106390	0.380284	9.775954	(latitud del punto)
9 :	545650.708	2104791.387	3065	19	02	11.220	19.036450	0.106387	0.380274	9.776355	Aceleracion parcial de la gravedad local (gl.)
10	546149.785	2104633.409	2985	19	02	6.072	19.035020	0.106371	0.380226	9.776601	Aceleración parciar de la gravedad locar (gr)
11 !	546649.218	2104453.930	2920	19	02	0.168	19.033380	0.106354	0.380170	9.776801	al =[ao* (1+(f '*oon2i) (f4*oon22i))] (Da*h)
12	547149.026	2104130.924	2855	19	01	49.619	19.030450	0.106322	0.380071	9.777000	gl =[ge* (1+(f **sen²j)-(f4*sen²2j))]-(Dg*h)
13	547202.932	2104084.341	2840	19	01	48.107	19.030030	0.106318	0.380056	9.777046	Sgl = 127.079015811 No.Datos

TABLA 3. BARRANCA COLORADA. SE CALCULÓ LA GRAVEDAD A CADA 500 METROS OBTENIÉNDOSE EL PROMEDIO DE 9.775309 M/S2

Pto.	COORD	ENADAS	ALTURA		Lati	tud °	(Desimal)	sen ²	sen²2	Fza.de gravedad	Constantes	para calcular la	gravedad de
۲۱0.	Х	Y	ALTUKA	٥	-		(Decimal)	Sell	Sell-2	local (gl)	punto cualqu	uiera, con latitud dif	erente al Ecua
1	541805.292	2104565.597	3920	19	01	4.200	19.017833	0.106186	0.379643	9.773706	ge =	9.7803185	m/s²
2	542281.714	2104714.524	3680	19	01	8.988	19.019163	0.106201	0.379688	9.774448	f'	0.0053024	
3	542765.336	2104780.798	3500	19	01	0.768	19.016880	0.106176	0.379611	9.775002	f4 =	0.0000059	
4	543138.274	2104927.049	3360	19	00	58.680	19.016300	0.106170	0.379591	9.775434	Dg	0.000003086	
5	543659.934	2104973.457	3250	19	00	56.484	19.015690	0.106163	0.379571	9.775773			
6	544153.192	2105039.484	3150	19	00	54.432	19.015120	0.106157	0.379551	9.776081	h =	(altura del punto)
7	544652.156	2105040.682	3080	19	00	51.731	19.014370	0.106149	0.379526	9.776297	f	XX "	
8	545151.654	2104823.664	3030	19	00	52.020	19.014450	0.106150	0.379529	9.776451		(latitud del punto	o)
9	545650.708	2104791.387	2990	19	00	50.183	19.013940	0.106144	0.379511	9.776574	Acoloracio	on parcial de la grav	ndad local (a
10	546149.785	2104633.409	2900	19	00	36.359	19.010100	0.106103	0.379381	9.776850	Aceleracio	ni parciai de la grav	euau iocai (g
11	546649.218	2104453.930	2840	19	00	25.128	19.006980	0.106070	0.379275	9.777033	d =[ao*	(1+(f '*sen²j)-(f4*se	n²2i\\1_(Da*h)
12	547149.026	2104130.924	2780	19	00	11.340	19.003150	0.106028	0.379146	9.777216	gi -[ge	(1.(1 3611))-(14 30	511 2J//J-(Dg 11)
13	547202.932	2104084.341	2730	18	59	59.856	18.999960	0.105994	0.379038	9.777369	Sgl = 127	7.088231465	No.Dato
	Gravedad Promedio de la Barranca 9,776017805					a Barranca:							

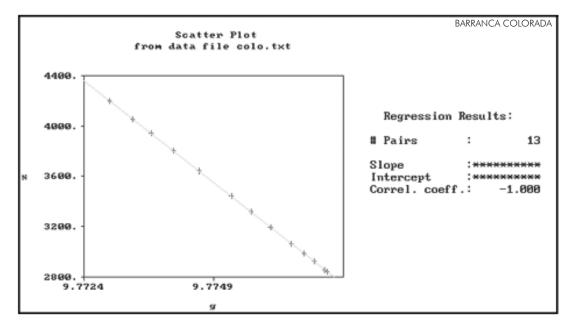
TABLA 4. BARRANCA QUIMICHULE. SE CALCULÓ LA GRAVEDAD A CADA 500 METROS OBTENIÉNDOSE EL PROMEDIO DE 9.776018

		•	"Calculo d	e la pendie	ente d	le la Barı	ranca"			
Pto.	COORD	ENADAS	AL TUDA	Dietopoio	m =	Y2 - Y1				
Ριο.	Х	Υ	ALTURA	Distancia	III –	X2 - X1				
		Pendiente	Cauce No.	.1						
1	541805.292	2104565.597	4200				Sm1+m2 = -2.5600		-2.560000000	
2	542281.714	2104714.524	4055	500	-0.	29000	OIIII IIIZ -		-2.500000000	
3	542765.336	2104780.798	3940	500	-0.	23000		·		
4	543138.274	2104927.049	3800	500	-0.	28000	Dondi	ante area	nedio de la Barran	
5	543659.934	2104973.457	3640	500	-0.	32000	rendie	——————————————————————————————————————		
6	544153.192	2105039.484	3440	500	-0.	40000		0	400000077	
7	544652.156	2105040.682	3315	500	-0.	25000		-0.	196923077	
8	545151.654	2104823.664	3195	500	-0.	24000	•			
9	545650.708	2104791.387	3065	500	-0.	26000		F	Punto alto	
10	546149.785	2104633.409	2985	500	-0.	16000			4200	
11	546649.218	2104453.930	2920	500	-0.	13000		F	unto Bajo	
12	547149.026	2104130.924	2855	500	-0.	13000			2840	
13	3 547202.932 2104084.341 2840 500 -0.03000							I	Distancia	
									6500	
		ΤΔΒΙΔ 5	BARRANICA	COLORAD	١Δ			Pendie	nte entre puntos	
		IADLA J.	DANIVAINCA	COLORAL	<i>'</i> ∕^.			-0.2	209230769	

Pto.	COORD	ENADAS	AL TUDA	Distancia	m =	Y2 - Y1				
Ριο.	Х	Υ	ALTURA	Distancia	=	X2 - X1				
		Pendiente	Cauce No.	1						
1	541805.292	2104565.597	4200				Sm1+	m2 =	-2.560000000	
2	542281.714	2104714.524	4055	500	-0	.29000	Jiiii	–	2.00000000	
3	542765.336	2104780.798	3940	500	-0	.23000				
4	543138.274	2104927.049	3800	500	-0	.28000	Dondie	nto nron	nedio de la Barrar	
5	543659.934	2104973.457	3640	500	-0	.32000	rendie			
6	544153.192	2105039.484	3440	500	-0	.40000	-0.196923077		106022077	
7	544652.156	2105040.682	3315	500	-0	.25000		-0.	.190923077	
8	545151.654	2104823.664	3195	500	-0	.24000	_			
9	545650.708	2104791.387	3065	500	-0	.26000		F	ounto alto	
10	546149.785	2104633.409	2985	500	-0	.16000			4200	
11	546649.218	2104453.930	2920	500	-0	.13000		Р	unto Bajo	
12	547149.026	2104130.924	2855	500	-0	.13000			2840	
13	547202.932	2104084.341	2840	500	-0	.03000			Distancia	
		•							6500	
		TABLA 6. BAR	ranca qu	IMICHULE.				Pendie	nte entre puntos	
								-0.2	209230769	

Análisis goestadístico con el programa Geoeas

Utilizando el programa Geoeas, el cual genera gráficas de probabilidad normal ponderada de las variables forzantes (gravedad y altura), se obtiene el comportamiento estadístico de dispersión con el modelo de regresión lineal de la matriz de variables analizadas, cuyo coeficiente de correlación para cada barranca procesada es cercano a -1 (ver figura 3). Con una sobreposición del modelo surfer y la representación estadística desplegada se observa la coincidencia entre los datos procesados y los modelados. También, se elaboraron gráficas que muestran el comportamiento de cada una de las variables consideradas.


La Estadística aplicada permitió interrelacionar perfiles de correlación entre varianzas, covarianzas, medias y rangos.

Covarianza y coeficiente de correlación

Para efectos estadísticos se presenta un análisis con el fin de determinar la covarianza y el coeficiente de correlación para cada uno de los cauces y obtener sus gráficas correspondientes:

El valor del índice de correlación varía en el intervalo [-1, +1]:

Si r=1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables

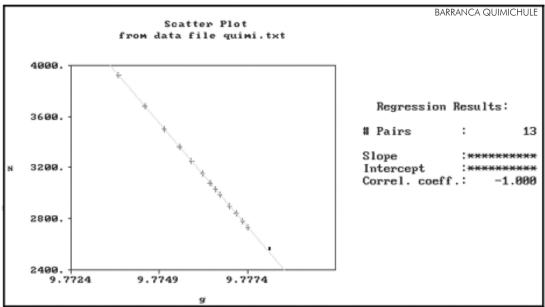


FIGURA 3. TABLAS PARA CORROBORAR EL COEFICIENTE DE CORRELACIÓN.

denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en proporción constante.

Si 0 < r < 1, existe una correlación positiva.

Si r = 0, no existe relación lineal. Pero esto no necesariamente implica que las variables son independientes: pueden existir todavía relaciones no lineales entre las dos variables.

Si -1 < r < 0, existe una correlación negativa.

Si r = -1, existe una correlación negativa perfecta.

El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante.

Se realizó el análisis geoestadístico de las barrancas, calculándose para cada una, la desviación estándar que permite determinar el promedio aritmético de fluctuación de los datos respecto a su punto central o media, y la covarianza, medida de dispersión conjunta de dos variables estadísticas. Las medidas anteriores se utilizaron para obtener el coeficiente de correlación, cuyo resultado en general para cada barranca se aproxima a -1. Los resultados se muestran en las tablas de la 7 a la 8.

Análisis goestadístico con el Surfer

Aplicando el programa Surfer se obtuvo el análisis de las variables estadísticas entre la altura y la gravedad. Comparando los resultados de este análisis con las gráficas del Geoeas, se observa que el proceso de gravedad tiende a acercarse al valor calculado a medida que su altitud disminuye, ver tablas de la 9 a la 10.

Modelación estructural con el Surfer

La modelación estructural en 2D y 3D se realizó con el programa Surfer, en la que se identifican las cinco barrancas de estudio y el comportamiento vectorial de las mismas, ver figuras 4 y 5.

"Estadistica de la Barranca"

Pto.	Altura		(Xi - \overline{X})2		Aceleracion de la gravedad local.		$(Yi - \overline{Y})^2$		
1	4200	796.1538	633860.947		9.772851	-0.002458	6.03939E-06		-1.956560877
2	4055	651.1538	424001.331		9.773300	-0.002009	4.03731E-06		-1.308367578
3	3940	536.1538	287460.947		9.773655	-0.001654	2.73601E-06		-0.886845767
4	3800	396.1538	156937.870		9.774088	-0.001221	1.49161E-06		-0.483828252
5	3640	236.1538	55768.639		9.774582	-0.000727	5.29011E-07		-0.171762177
6	3440	36.1538	1307.101		9.775199	-0.000110	1.20568E-08		-0.003969814
7	3315	-88.8462	7893.639		9.775585	0.000276	7.61465E-08		-0.024516798
8	3195	-208.8462	43616.716		9.775954	0.000645	4.16245E-07		-0.134741456
9	3065	-338.8462	114816.716		9.776355	0.001046	1.09449E-06		-0.354493546
10	2985	-418.8462	175432.101		9.776601	0.001292	1.66994E-06		-0.541259438
11	2920	-483.8462	234107.101		9.776801	0.001492	2.22589E-06		-0.721869941
12	2855	-548.8462	301232.101		9.777000	0.001691	2.85915E-06		-0.928044829
13	2840	-563.8462	317922.485	Desviacion Estandar	9.777046	0.001737	3.01702E-06	Desviacion Estandar	-0.979377112
	3403.846		211873.669	460.2973698	9.775309		2.01571E-06	0.001419758	-0.653510583
						nte de Corre 999999554			Covarianza

TABLA 7. BARRANCA COLORADA.

"Estadistica de la Barranca"

Pto.	Altura		(Xi - X) ²		Aceleracion de la gravedad local.		$(Yi - \overline{Y})^2$		
1	3920	750	562500.0000		9.773706	-0.002312	5.34349E-06		-1.733698657
2	3680	510	260100.0000		9.774448	-0.001570	2.46559E-06		-0.800811723
3	3500	330	108900.0000		9.775002	-0.001016	1.03227E-06		-0.335282639
4	3360	190	36100.0000		9.775434	-0.000584	3.41395E-07		-0.111015158
5	3250	80	6400.0000		9.775773	-0.000245	6.0108E-08		-0.019613542
6	3150	-20	400.0000		9.776081	0.000063	3.98338E-09		-0.00126228
7	3080	-90	8100.0000		9.776297	0.000279	7.76832E-08		-0.025084539
8	3030	-140	19600.0000		9.776451	0.000433	1.87542E-07		-0.060628639
9	2990	-180	32400.0000		9.776574	0.000556	3.09379E-07		-0.100119271
10	2900	-270	72900.0000		9.776850	0.000832	6.91932E-07		-0.224592674
11	2840	-330	108900.0000		9.777033	0.001015	1.03074E-06		-0.335033064
12	2780	-390	152100.0000		9.777216	0.001198	1.43589E-06		-0.467330943
13	2730	-440	193600.0000	Desviacion Estandar	9.777369	0.001351	1.8247E-06	Desviacion Estandar	-0.594357709
	3170		120153.8462	346.6321482	9.776018		1.13882E-06	0.001067156	-0.369910064
						nte de Corre 999998549			Covarianza

TABLA 8. BARRANCA QUIMICHULE.

Univariate Statistics

	Х	Υ	Z
Minimum:	2840	9.772851392	9.772851392
25%-tile:	2985	9.774087594	9.774087594
Median:	3315	9.775584855	9.775584855
75%-tile:	3800	9.776601172	9.776601172
Maximum:	4200	9.777045867	9.777045867
Midrange:	3520	9.7749486295	9.7749486295
Range:	1360	0.0041944750000003	0.0041944750000003
Interguartile Range:	815	0.0025135780000003	0.0025135780000003
Median Abs. Deviation:	395	0.0012159950000008	0.0012159950000008
Mean:	3403.8461538462	9.7753089084615	9.7753089084615
Trim Mean (10%):	3382.7272727273	9.7753744137273	9.7753744137273
Standard Deviation:	460.29736979376	0.0014197582068528	0.0014197582068528
Variance:	211873.66863905	2.015713365926E-006	2.015713365926E-008
Coef. of Variation:			0.00014523921649411
Coef. of Skewness:			-0.34133729589633

TABLA 9. BARRANCA COLORADA.

Univariate Statistics

	Х	Υ	Z
Minimum:	2730	9.773706207	9.773706207
25%-tile:	2900	9.775433515	9.775433515
Median:	3080	9.776296522	9.776296522
75%-tile:	3360	9.77684963	9.77684963
Maximum:	3920	9.777368618	9.777368618
Midrange:	3325	9.7755374125	9.7755374125
Range:	1190	0.0036624110000005	0.0036624110000005
Interguartile Range:	460	0.00141611499999996	0.00141611499999996
Median Abs. Deviation:	240	0.00073653499999971	0.00073653499999971
Mean:	3170	9.7760178050769	9.7760178050769
Trim Mean (10%):	3141.8181818182	9.7761051491818	9.7761051491818
Standard Deviation:	346.63214818283	0.0010671560113215	0.0010671560113215
Variance:	120153.84615385		16 1.1388219524997E-00
Coef. of Variation:			0.00010916060430734
Coef of Skewness:			-0.72181350474623
0001. 01 0K0M1000.			5.12.15.155641 4625

TABLA 10. BARRANCA QUIMICHULE.

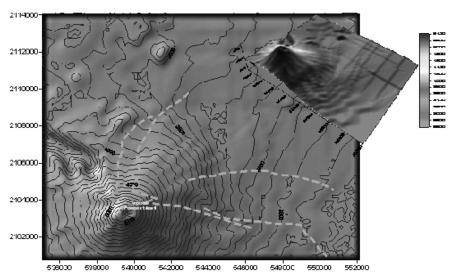


FIGURA 4. SE PROCESARON LOS DATOS PARA IDENTIFICAR LAS BARRANCAS DE ESTUDIO EN EL MAPA BASE DE LA ZONA DEL VOLCÁN POPOCATÉPETL.

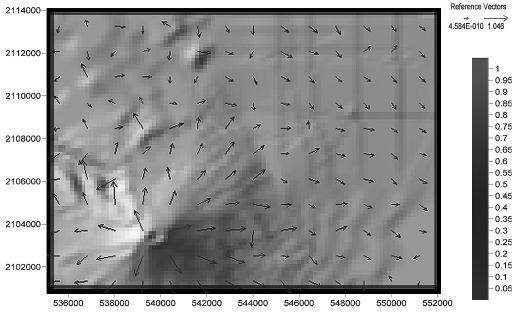


FIGURA 5. DIRECCIÓN VECTORIAL DE LAS BARRANCAS CON RESPECTO A LA GRAVEDAD.

El variograma es una herramienta que permite analizar el comportamiento espacial de una variable sobre un área definida. En el caso de las barrancas, se elaboró el variograma de la altura contra la gravedad local calculada, ver figura 6.

Cálculo de la fuerza del agua

Se denomina fuerza del agua a la cantidad de empuje que ejerce este líquido en dirección de la pendiente. Los cálculos realizados mediante el modelo matemático

$$F_1 = (d*cosm)(gl)F_1 = (d*cosm)(gl)$$

mostraron que la fuerza aumenta proporcionalmente a la inclinación de la pendiente. El cauce del agua se subdividió con una equidistancia de 500 metros; los cálculos se muestran en las tablas de la 11 a la 12.

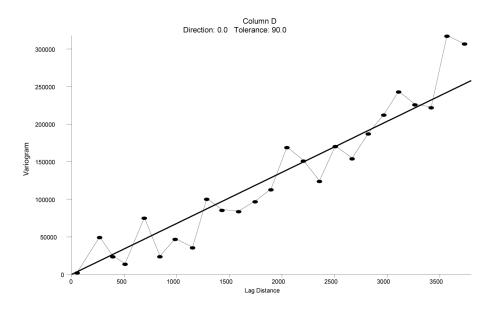


FIGURA 6. VARIOGRAMA DE LA ALTURA RESPECTO A LA GRAVEDAD.

		Densidad		Y2 - Y1	Coseno de la	Gravedad	Fuerzas	Г_	- (d * coam)(al)	
Pto.	ALTURA	del agua	m =	X2 - X1	Pendiente (Cos m)	local del punto (gl)	Parciales	$F_i = (d * \cos m)(gl)$		
		,		Pendie	nte del cauce					
1	4200							SFi =	1173.00206330	
2	4055	1000	-0.4	116168	0.999974	9.773300	97.730418	011	1170.0020000	
3	3940	1000	-0.4	114141	0.999974	9.773655	97.733995			
4	3800	1000	0.3	98168	0.999976	9.774088	97.738516	Numero de datos		
5	3640	1000	-0.1	114741	0.999998	9.774582	97.745620	INUII	leio de dalos	
6	3440	1000	-0.4	117382	0.999973	9.775199	97.749397		40	
7	3315	1000	-0.4	112557	0.999974	9.775585	97.753314		12	
8	3195	1000	-0.0	000042	1.000000	9.775954	97.759541	1		
9	3065	1000	0.0	00046	1.000000	9.776355	97.763551		n	
10	2985	1000	-0.3	348323	0.999982	9.776601	97.764205		$F = \sum_{i} F_{i}$	
11	2920	1000	-0.4	117100	0.999974	9.776801	97.765418		fw1	
12	2855	1000	0.5	82900	0.999948	9.777000	97.764939		07 75047404 N	
13	2840	1000	1.5	82900	0.999618	9.777046	97.733150	─ 97.75017194 N		

TABLA 11. BARRANCA COLORADA.

					"CALCULO DE I	LA FUERZA DE	L AGUA"			
Pto.	ALTURA	Densidad	m =	Y2 - Y1	Coseno de la Pendiente	Gravedad local del	Fuerzas	F	$= (d * \cos m)(gl)$	
		del agua		X2 - X1	(Cos m)	punto (gl)	Parciales	-		
				Pendie	nte del cauce					
1	3920							SFi =	1173.08566882	
2	3680	1000	-0.4	116168	0.999974	9.774448	97.741897	011-	1170.0000002	
3	3500	1000	-0.4	14141	0.999974	9.775002	97.747464			
4	3360	1000	0.3	98168	0.999976	9.775434	97.751975	Num	ero de datos	
5	3250	1000	-0.1	14741	0.999998	9.775773	97.757530			
6	3150	1000	-0.4	17382	0.999973	9.776081	97.758215		12	
7	3080	1000	-0.4	12557	0.999974	9.776297	97.760431		12	
8	3030	1000	-0.0	00042	1.000000	9.776451	97.764509			
9	2990	1000	0.0	00046	1.000000	9.776574	97.765740		n	
10	2900	1000	-0.3	348323	0.999982	9.776850	97.766690		$F = \sum_{i=1}^{n} F_i$	
11	2840	1000	-0.4	17100	0.999974	9.777033	97.767740		(×1	
12	2780	1000	0.5	82900	0.999948	9.777216	97.767101		07.7E742007 N	
13	2730	1000	1.5	82900	0.999618	9.777369	97.736376		97.75713907 N	

TABLA 12. BARRANCA QUIMICHULE.

Cálculo del gasto

El gasto es el volumen de un líquido que pasa por una sección en un determinado tiempo, para este caso se obtuvo el gasto de cada una de las barrancas aplicando la ecuación (2). Ver tablas 13 a la 14.

$$Q = 0.278 * k * i * A \tag{2}$$

donde: Q= Gasto en m³/s

k= coeficiente de permeabilidad

i= Gradiente hidráulico

A= Área de captación

Conclusiones

Este trabajo, presenta los resultados obtenidos del procesamiento de datos cartográficos para determinar la relación altura-gravedad, la gravedad promedio en cada barranca, así como su pendiente, y posteriormente, el gasto de un líquido en cada una de las mismas.

La aplicación de programas geoestadísticos pone de manifiesto la importancia de la aplicación matemática en los análisis geomorfológicos, presentando diferentes gráficas y datos comparativos de los análisis así como los estudios de modelados estructurales en procesos geomorfológicos e hidrológicos. Se obtuvo una base de datos al hacer el cálculo de la gravedad de cada barranca en estudio, con esto se determinó que la barranca de mayor

"Calculo del gasto"		
Área de la cuenca hidrológica	2356300 m ²	
Longitud del cauce	6500 m	
Coeficiente de permeabilidad (k)	0.05 cm/s	
Gradiente hidraulico (i)	0.209231 m	
Gasto	246.505231 m ³ /s	

TABLA 13. BARRANCA COLORADA.

"Calculo del gasto"	
Área de la cuenca hidrológica	4324587 m ²
Longitud del cauce	6500 m
Coeficiente de permeabilidad (k)	0.05 cm/s
Gradiente hidraulico (i)	0.183077 m
Gasto	395.866041 m ³ /s

TABLA 14. BARRANCA QUIMICHULE.

gravedad es Quimichule con un valor de 9.7760 m/s^2 y una pendiente de -0.20923%.

Para el análisis geoestadístico se aplicaron diversos programas para analizar el comportamiento de dispersión numérico de los resultados de covarianza y correlación entre varianzas, arrojando un resultado cercano a -1, el cual muestra una analogía negativa para las barrancas en estudio.

En el modelado estructural se muestra el comportamiento vectorial que presenta cada barranca con relación a la gravedad en el volcán Popocatépetl apoyado con el programa Surfer 8.

Para determinar el cálculo hidrológico de la fuerza del agua en cada barranca, se tomó en cuenta la gravedad local y la pendiente de sus perfiles expresada en porcentajes, obteniendo resultados que oscilan entre 97.72 N y 97.75 N.

Mediante el modelo racional se calculó el gasto en cada barranca empleando el coeficiente de escurrimiento, el área de captación e intensidad de lluvia. Se determinó que la barranca de menor gasto es la barranca Colorada con 246.50m³/s. •

Bibliografía

Campbell, R.

2002 Introduction to remote sensing. Academic Press, USA. pp. 20-59.

Dóniz, J.

2002 El volcanismo basáltico de la dorsal de Pedro Gil en Tenerife. Universidad La Laguna. pp. 101-114.

Gasquet, C.

2000 Analyse de fourier et applications France.

Godman, P.

2001 Principles of geographical information systems For Land Resources. Springer. USA.

Juárez, A, Gay, C. Flores, Y.

2005 Impact of the Popocatépetl's volcanic activity on the air quality of Puebla City, México. Atmósfera. 57-69. México.

Lennon, T.

2002 Remote sensing digital image analysis, Esa/ Esrin. USA.

Schenk, T.

2002 Fotogrametría digital. ICC. España.

Spiegel, M.

2000 Probabilidad y Estadística. Ed. Mc. Graw Hill. México.

Ramos, R.

2005 Aplicación de imágenes satelitales para determinar el clima y la radiación solar en el estado de Puebla y la geohidrología de su zona norte. Ciencia Ergo Sum. México.

http://boletinsgm.igeolcu.unam.mx/epoca04/5703/(6) Macias.pdf.

http://boletinsgm.igeolcu.unam.mx/epoca04/5703/ (3)Nieto.pdf.

http://www.um.es/dp-geografia/papeles/n35/07%20 Doniz%20101-114.pdf.

http://www.crid.or.cr/digitalizacion/pdf/spa/doc16159/doc16159-2c.pdf.